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A nonlinear integro-differential equation for determination of the shape of the meridian of a shell of revolu-
tion for which a prescribed external load produces no change in the curvature and torsion of the median sur-
face has been derived. A formula for determination of the cross-sectional area of an elastic stiffening ring has
been obtained.

Consideration is given to an elastic shell of revolution which is bounded by the planes perpendicular to the
axis of rotation and which is deformed by an axisymmetric load acting on the surface and at the edges of the shell.
It is necessary to determine the shape of the meridian and of a bearing ring for which a prescribed external load gen-
erates no couple stresses in the shell.

According to the membrane theory of shells, determination of forces in the shell of revolution loaded symmet-
rically about the axis of rotation is reduced to solution of the system of equations [1, 2]

d
dϕ

 (rNϕ) − r1Nθ cos ϕ + qϕrr1 = 0 ,   rNϕ + r1Nθ sin ϕ + qnrr1 = 0 . (1)

After obvious transformations, system (1) takes the form

d
dϕ

 (r sin ϕNϕ) + (qn cos ϕ + qϕ sin ϕ) rr1 = 0 ,   
Nϕ
r1

 + 
Nθ
r2

 + qn = 0 . (2)

The radii of curvature of the meridian r1 and the median surface r2 in the plane which is perpendicular to the merid-
ian are related to the radius of the shell r (of the parallel circle) and the angle ϕ formed by the normal n to the me-
dian surface and the axis of rotation by the following formulas [1, 2]:

1
r1

 = 
d sin ϕ

dr
 ,   

1
r2

 = 
sin ϕ

r
 . (3)

Introducing the notation

η = cosec ϕ , (4)

we obtain the solution of system (2) in the form
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 , (5)

where C is the integration constant and r0 is the radius of the initial circle of the shell of revolution. If this edge of
the shell is loaded by a load (uniformly distributed along the parallel) with an intensity of q = const in parallel to the
axis of rotation, from the first equation of (5) we have [2]
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C = − r0q . (6)

If r0 = 0 (no opening), then q = 0 and C = 0.
To derive the resolving equation of the problem we use the equation of compatibility (continuity) of deforma-

tions, which in the case of linear deformations and isotropic bodies in question has the form [2]

d
dr

 (rεθ) = εϕ . (7)

Transforming (7) with the use of Hooke’s law

εθ = 
1

Eh
 (Nθ − νNϕ) ,   εϕ = 

1
Eh

 (Nϕ − νNθ) , (8)

from (7) and (8) for E and ν = const and h = h(r) we find

Nϕ − νNθ = h 
d
dr

 


r
h

 (Nθ − νNϕ)

 . (9)

With account for (5), Eq. (9) yields the nonlinear integro-differential equation of second order for η = csc ϕ
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 η = 0 ,

(10)

where h′ = dh/dr. The sought shape of the meridian r = r(x) is determined from the equation

dr
dx

 = √ η2 − 1  . (11)

Since the solution of Eq. (10) is a function of r, i.e., η = η(r), Eq. (11) allows separation of variables

x = x0 + ∫ 
r0

r
dr

√ η2 − 1
 , (12)

where (x0, r0) are the coordinates of the starting point of the meridian.
Another variant of the resolving system of equations can be obtained when equilibrium conditions are em-

ployed for the part of the shell lying above the parallel circle. In this case, the initial system of equations is written
as follows [2]:

2πrNϕ sin ϕ + R = 0 ,   Nϕr + r1 sin ϕNθ + qnrr1 = 0 . (13)

Here R is the projection of the resultant vector of the total load applied to the above-mentioned part of the shell onto
the axis of rotation.

The solution of the system of equations (13) has the form

Nϕ = − 
Rη
2πr

 ,
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Nθ = − 
η
r1

 



qnrr1 − 

2Rη
2π




 . (14)

From (14) and (9) we obtain the equation for determination of η = η(r). The meridian shape sought is found upon
substitution of this function into (12).

Formulas (11)–(14) ensure a nonbending shape of the meridian and, naturally, nonbending stressed state of the
shell in its main part since bending stresses can appear in the vicinity of the boundary. We can circumvent this by
stiffering the shell with circular rings with suitable rigidities. The parameters of such a ring are determined from the
conditions of equality of the circular deformations of the ring and the shell and those of equilibrium of the ring ele-
ment:

εθ
′  = εθ ;   Sσθ

′  % hσϕr cos ϕ = 0 . (15)

Here εθ′  and δθ′  are the deformation and stress in the ring and S is the area of its cross section. For the sake of sim-
plicity we will assume that the shell and the ring are manufactured from the same material. Then, by virtue of
Hooke’s law, (15) takes the following form:

σθ
′  = σθ − νσϕ ;   Sσθ

′  % hσϕr cos ϕ = 0 ,

whence we obtain

S = & 
hσϕr cos ϕ
σθ − νσϕ

 , (16)

or

S = & 
hNϕr cos ϕ

Nθ − Nσϕ
 .

Here the + or − sign is selected from the condition S > 0.
In the case of a negative value of the fraction on the right-hand side of expression (16) it can be applied to

determination of the cross-sectional area of the external boundary ring, whereas in the case of a positive value it can
be applied to determination of the area of the internal ring.

NOTATION

x, distance along the axis of rotation of the shell; r, radius of the shell; h, thickness; ϕ, angle between the
normal to the shell and the axis of rotation; r1 and r2, radii of curvature of the meridian and the cross section in the
plane perpendicular to the meridian; θ, polar angle; εϕ and εθ and Nϕ, Nθ, σϕ, and σθ, deformations and forces in the
meridian plane and in the plane perpendicular to the meridian; E and ν, Young modulus and Poisson coefficient; qn
and qϕ, normal and tangential components of the load.
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